
50 The Delphi Magazine Issue 59

Beating The System:
TAR-geting Linux...
by Dave Jewell

Oh alright, I unreservedly apo-
logise for that dreadful pun!

As promised in the last Beating The
System, this month we’re going to
dwell on some of the programming
issues that surround moving to
Kylix and targeting the Linux oper-
ating system. To put it another
way, up until now, Delphi and
C++Builder developers haven’t
had to worry much about cross-
platform portability issues, but
once Kylix (or whatever Borland
choose to call it!) hits the streets,
we’ll all be a lot more interested in
porting our applications across to
the brave new world of Linux, so
we may as well start thinking about
portability issues right now.

I’m not allowed to mention
specific software companies or
products, but I can tell you that a
surprising number of key Delphi
component developers are already
lining up behind the Kylix band-
wagon, which means that, by the
time Kylix actually ships, there will
be quite a number of third-party

tools and controls available for it,
many of which will be familiar to
Windows developers. Thus,
whether you’re an application
developer or a component creator,
now is the time to get to grips with
portability issues, and now is the
time to tackle the tricky task of
removing all those ‘Windowisms’
from your code.

Rather than talking entirely in
the abstract, I wanted to do some-
thing practical, and therefore this
discussion of portability issues is
interwoven with the development
of TTarFile, a (mostly!) portable
Delphi class which makes it possi-
ble to read UNIX-style tar files from
your application. But first...

Removing Windowisms
Although I was quite pleased with
last month’s enhanced group box
component, I won’t pretend that I
made any serious effort to turn it
into a portable component. If
you’ve got last month’s article in
front of you, take a long hard look

at the TCustomGroupBoxEx.Paint-
Caption method where you will
find a wide variety of misdemean-
ours from a cross-platform point of
view.

To begin with, you’ll notice that
the code declares two variables of
type TLogFont and TTextMetric,
both of which are native Windows
API types, this makes them an
obvious no-no. The next problem
comes a few lines down when I use
the OffsetRect routine to reposi-
tion the rectangle which sur-
rounds the caption text. Again,
OffsetRect is a native Windows
call, which is therefore out. In this
particular case, the implementa-
tion of OffsetRect is so trivial that
most programmers will probably
roll their own equivalent in order
to have the same routine under
both Linux and Windows. Indeed,
if we’re lucky, Borland may even
provide an implementation for us.

Things get somewhat dirtier as
we delve deeper. Rather than figur-
ing out the exact pixel location of
the group box caption, and draw-
ing it at that position, I sneakily
relied upon the fact that Windows
has a DrawText routine which can
perform automatic left or right
justification and centring of a
string within a designated rectan-
gle. This is why I set up the Flags
variable and then called DrawText

to do all the real work. Again,
this isn’t acceptable under
Linux because of course
DrawText is a Windows call.

Having said that, it’s now
public knowledge that the
Linux equivalent of the VCL
library is going to sit on top
of Qt, the excellent C++ appli-
cation framework from Troll
Tech (recently relocated to
www. trolltech.com). If you
carefully read through the
reference documentation for
Qt, you’ll find that the class

➤ Borland have just
released some exciting
screenshots of an early
version of the Kylix
development system:
in this case running
under the KDE window
manager.

July 2000 The Delphi Magazine 51

library often includes method calls
which are more or less equivalent
to procedural counterparts in Win-
dows. Draw- Text is a good example
of this, appearing as a method of
the QPainter class, see Listing 1.

Although it’s by no means obvi-
ous from this function prototype,
the tf parameter is actually a mask
of various bit-flags broadly equiva-
lent to the formatting flags in the
Win32 DrawText call, including
those all-important text justifica-
tion options. Thus, if you were
porting my enhanced group box
control over to Linux, you could
always use a little conditional com-
pilation to call either the Win32
DrawText or QPainter::drawText as
appropriate. QPainter is the Qt
equivalent of a Windows device
context, so if you’re doing any
drawing, you’re bound to have a
QPainter object to hand!

You might argue that calling
down to the Qt layer is messy, and
that’s undeniably true. But of
course it’s no messier than making
Windows API calls from inside your
nice, neat, object oriented VCL
code. The bottom line is that a cer-
tain amount of conditional compi-
lation and special case code is
going to be inevitable, but with
careful design this can be mini-
mised, and preferably localised
into one platform-dependent area
of your code. Similar consider-
ations apply to calls such as
SetTextColor, SetBkMode, and so
forth. Again, these routines have
their equivalent QPainter methods
in Linux-land.

Enter Delphi 6 And CLX
So does this mean that you’ve got
to mess up your code with lots of
conditional compilation state-
ments? Well, not necessarily, no,
there is another option. Something
else which is now public
knowledge (following a recent pre-
sentation by Charles Jazdzewski,
Delphi’s Chief Architect) is the
relationship between Delphi 6,
Kylix and CLX. CLX (pronounced

‘clicks’ in case you’ve not heard of
it), is the new cross-platform com-
ponent library which will replace
the VCL library under Linux. I think
it stands for Component Library,
X-Platform, or something like that.
The key point here (and it’s an
exciting one!) is that Borland plan
to implement CLX in Delphi 6, the
next major release of the
development system for Windows.

You can see what this means by
referring to the overall architec-
ture diagram which I’ve put
together in Figure 1. Kylix develop-
ers (and bear in mind that this
includes the Linux-hosted C++
development system as well as
Object Pascal) will construct appli-
cations made up from CLX compo-
nents and will use the CLX library
just as you’re used to using the VCL
at the present time. They will, how-
ever, have the option of bypassing
CLX and making ‘raw’ Qt calls in
those cases where CLX doesn’t
provide the exact functionality
that’s required.

Strictly speaking, this is unlikely
to be necessary, since we’re told
that the Linux implementation of
CLX is going to be a complete

‘wrap’ of Qt. Hopefully, the
QPainter::drawText functionality
that I’ve alluded to earlier will be
exposed as part of the CLX frame-
work, as a new method of TCanvas,
or whatever the CLX equivalent of
TCanvas turns out to be.

On the Windows side, the devel-
oper has got two choices. You can
either stick with the VCL library, or
you can go down the CLX route.
Delphi 6 will include a licensed ver-
sion of Qt for Windows, meaning
that it will be possible to create a
‘one size fits all’ code base that can
be compiled under Delphi 6 and
under Kylix. This is likely to be the
most attractive option for those
who want to port their software to
Linux, but obviously a certain
amount of re-engineering will be
needed in making the move from
VCL to CLX.

There are certain areas which
will clearly require more work than
others. For example, even the
‘purest’ (in the sense of not making
any Windows API calls) Delphi
program will very likely need
modifications in the area of
filenames and pathnames. As you
may know, Linux doesn’t have the
concept of drive letters. Instead,
the entire Linux file system
descends from the root directory

➤ Figure 1: With Delphi 6, developers will have two possible
implementation routes: continue to use the VCL, offering maximum
Windows-specific features, or go down the CLX route, which will
provide a high degree of source code compatibility with Kylix.

➤ Listing 1

void QPainter::drawText (int x, int y, int w, int h, int tf, const QString & str,
int len = -1, QRect * brect=0, char ** internal=0)

52 The Delphi Magazine Issue 59

unit TarUnit;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, ComCtrls;

type
TForm1 = class(TForm)
Files: TListView;
Button1: TButton;
OpenDialog1: TOpenDialog;
Label1: TLabel;
SaveDialog1: TSaveDialog;
procedure FilesDblClick(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}
type
TTarFileEntry = class(TObject)
private
name, uid, gid: String;
mode, size: Integer;
mtime: TDateTime;
FileOffset: Integer;

end;
TTarFile = class (TObject)
private
FileList: TStringList;

public
constructor Create (const FileName: String);
destructor Destroy; override;

end;
// TTarFile
function OctalToInt (Str: String): Integer;
var
Idx: Integer;

begin
Result := 0; Str := Trim (Str);
for Idx := 1 to Length (Str) do begin
if not (Str [Idx] in ['0'..'7']) then Exit;
Result := (Result shl 3) + Ord (Str [Idx]) - Ord ('0');

end;
end;
function UnixTimeToFileTime (UnixDateTime: TLargeInteger):
TDateTime;

var
Time: Integer;
LocalTime: TFileTime;
FileTime: TFileTime absolute UnixDateTime;

begin
UnixDateTime := (UnixDateTime + 11644473600) * 10000000;
FileTimeToLocalFileTime (FileTime, LocalTime); // WIN32!!
FileTimeToDosDateTime (LocalTime, LongRec (Time).Hi,
LongRec (Time).Lo); // WIN32!!

Result := FileDateToDateTime (Time);
end;
function PermissionsToStr (Perm: Integer): String;
function PermFlags (bits: Integer): String;
begin
Result := '---';
if (bits and 4) <> 0 then Result [1] := 'r';
if (bits and 2) <> 0 then Result [2] := 'w';
if (bits and 1) <> 0 then Result [3] := 'x';

end;
begin
// Display order is owner-group-other
Result := PermFlags (Perm shr 6) + PermFlags(Perm shr 3)
+ PermFlags (Perm);

end;
constructor TTarFile.Create (const FileName: String);
type
TarHeader = record
name: array [0..99] of Char; // name of the file
mode: array [0..7] of Char; // permission bits
uid: array [0..7] of Char; // owner - user ID
gid: array [0..7] of Char; // owner - group ID
size: array [0..11] of Char; // size of this file
mtime: array [0..11] of Char; // file modification time
chksum: array [0..7] of Char; // checksum for file header
linkflag: Char;
linkname: array [0..99] of Char;
magic: array [0..7] of Char;
uname: array [0..31] of Char;
gname: array [0..31] of Char;
devmajor: array [0..7] of Char;
devminor: array [0..7] of Char;

end;
var
fs: TFileStream;
Header: TarHeader;
NextBlock: Integer;
entry: TTarFileEntry;

begin
Inherited Create;
FileList := TStringList.Create;
if FileExists (FileName) then begin

fs := TFileStream.Create (FileName, fmOpenRead);
try
while fs.Position < fs.Size do begin
NextBlock := fs.Position + 512;
fs.Read (Header, sizeof (Header));
if Header.name = '' then break;
entry := TTarFileEntry.Create;
entry.name := Header.name;
entry.mode := OctalToInt (Header.mode);
entry.size := OctalToInt (Header.size);
entry.mtime := UnixTimeToFileTime(
OctalToInt(Header.mtime));
entry.FileOffset := NextBlock;
if Trim (Header.magic) = 'ustar' then begin
entry.uid := Trim (Header.uname);
entry.gid := Trim (Header.gname);

end else begin
entry.uid := Trim (Header.uid);
entry.gid := Trim (Header.gid);

end;
FileList.AddObject (entry.name, entry);
fs.Position := NextBlock + ((entry.size + 511)
div 512) * 512;

end;
finally
fs.Free;

end;
end;

end;
destructor TTarFile.Destroy;
var Idx: Integer;
begin
for Idx := FileList.Count - 1 downto 0 do
FileList.Objects [Idx].Free;

FileList.Free;
Inherited Destroy;

end;
procedure TForm1.FilesDblClick(Sender: TObject);
var
Item: TListItem;
FileName: String;
Size, Offset: Integer;
function DeUnix (const Path: String): String;
var Idx: Integer;
begin
Result := Path;
for Idx := 1 to Length (Result) do
if Result [Idx] = '/' then Result [Idx] := '\';

end;
procedure ExtractFile (const Archive, Dest: String;
Offset, Size: Integer);
var
sArchive, sDest: TFileStream;

begin
sArchive := TFileStream.Create (Archive, fmOpenRead);
try
sDest := TFileStream.Create (Dest, fmCreate);
try
sArchive.Position := Offset;
sDest.CopyFrom (sArchive, Size);

finally
sDest.Free;

end;
finally
sArchive.Free;

end;
end;

begin
if Files.Items.Count = 0 then

ShowMessage ('Please open a tar file first')
else begin
Item := Files.Selected;
if Item <> Nil then begin
Size := StrToInt (Item.SubItems [2]);
if Size = 0 then
ShowMessage ('Can only extract physical files')

else begin
Offset := StrToInt (Item.SubItems [6]);
FileName := ExtractFileName (DeUnix (Item.Caption));
if MessageDlg('Extract ' + FileName + '?',
mtConfirmation, [mbYes, mbNo], 0) = mrYes
then begin
SaveDialog1.FileName := FileName;
if SaveDialog1.Execute then
ExtractFile (OpenDialog1.FileName,
SaveDialog1.FileName, Offset, Size);

end;
end;

end;
end;

end;
procedure TForm1.Button1Click(Sender: TObject);
var
Idx: Integer;
tar: TTarFile;
Item: TListItem;
Entry: TTarFileEntry;

begin
if OpenDialog1.Execute then begin
tar := TTarFile.Create (OpenDialog1.FileName);
try

{ CONTINUED ON FACING PAGE }

July 2000 The Delphi Magazine 53

{ CONTINUED FROM FACING PAGE}
Files.Items.Clear;
for Idx := 0 to tar.FileList.Count - 1 do begin
Entry := TTarFileEntry (tar.FileList.Objects [Idx]);
Item := Files.Items.Add;
Item.Caption := Entry.name;
Item.SubItems.Add (FormatDateTime ('dd/mm/yyyy',
Entry.mtime));

Item.SubItems.Add (FormatDateTime ('hh:mm:ss',
Entry.mtime));

Item.SubItems.Add (IntToStr (Entry.size));
Item.SubItems.Add (PermissionsToStr (Entry.mode));
Item.SubItems.Add (Entry.uid);

Item.SubItems.Add (Entry.gid);
if Entry.size <> 0 then Item.SubItems.Add ('$' +
IntToHex (Entry.FileOffset, 8));

end;
finally
tar.Free;
Label1.Visible := Files.Items.Count > 0;

end;
end;

end;
end.

named ‘/’, ie a single forward slash.
So drive letters are out, and so are
backslashes as path separators. A
less obvious, but no less impor-
tant, consideration is the fact that
Linux has a case-sensitive file
system. Thus, MyApp.dat is a
completely different file from
Myapp.dat. Both files can happily
coexist in the same directory, and
if you don’t get your capitalisation
right, you’ll end up referencing the
wrong file. For the same reasons,
unit names are case sensitive when
referenced from a uses clause. I
imagine that Borland will provide
new implementations of Extract-
FilePath, ExtractFileName, etc,
which, as far as possible, do the
right thing on either platform.

The TAR File Format
With that as an introduction, let’s
take a look at the tar file format,
something that’s going to become
increasingly relevant to Windows
programmers who start venturing
into the world of UNIX/Linux devel-
opment, and need to read
Linux-originated file distributions.
tar is actually a very old file format,
when I tell you that tar stands for
‘Tape Archive’, you’ll realise just
how old this format is. That’s right
folks, we’re talking about paper
tape readers, paper tape punches
and all the fun things that your
humble scribe used to play with
when I started at university some
twenty five years ago.

I chose the tar file format for one
reason only: it’s simple! A tar
archive can contain multiple files,
but, here’s the important bit, none
of the data within those files is
compressed. You can think of the
tar file as a straight concatenation
of multiple files, with a special file

header preceding the data for each
file. Think of it as a ZIP file without
data compression, if you like. Inter-
estingly, the UNIX/Linux program-
ming community have a
compressor/decompressor utility
called gzip which is the reverse of
tar: it does provide data compres-
sion, but it only works with a single
file! Since gzip only works with one
file and tar doesn’t provide com-
pression, you won’t be surprised
to hear that Linux programmers
routinely use tar to group a set of
related files into a single archive,
and then use gzip to compress that
one file. Sneaky, huh? This is why
you often see Linux-related file
distributions with file names such
as xxxx.tar.gzip. This naming
convention indicates that you
should decompress first, and then
extract the files from the resulting
tar file.

At this point, some of you are no
doubt thinking that if these Linux
gurus are so smart, why don’t they
just write a decent ZIP utility that
stores multiple files into one com-
pressed archive? Well, I’ve got a lot
of sympathy with that position
and, as it happens, PKZIP compati-
ble utilities with names such as zip
and unzip do exist. However, the
majority of Linux developers still
seem to favour this hybrid use of
tar and gzip, and therefore we’re
stuck with tar files for some time to
come. Truth to tell, putting archiv-
ing capabilities (file grouping) into
one utility and compression/
decompression capabilities into
another utility is consistent with

the classical UNIX philosophy of
getting a single program to do one
thing and do it well.

Each file in the tar archive is pre-
ceded with a record which looks
like that shown in Listing 2, the
TarHeader record which is defined
inside the TTarFile.Create con-
structor. The first big surprise
here is that all the fields are char-
acters. I suspect that this is a his-
torical hangover from the days of
paper tape: some systems were
seven bit only whereas others
were eight bit and could therefore
cope with every possible bit value.

Briefly, the meaning of the
various fields is as follows.

The name field specifies the name
of the file that follows this header.
As with WinZip and more modern
archive formats, tar is capable of
recording directory information,
and the header might therefore
represent the presence of a direc-
tory, rather than an actual file.

The mode field is used to repre-
sent standard UNIX file permis-
sions for owner, group and other.
The lower three bits represent
other permissions, the next three
bits represent the group permis-
sions and the final three bits repre-
sent owner permissions. This
yields the equivalent bit-mask dec-
larations shown in Listing 3,
although I haven’t used these in
my code. And (yes, you’ve
guessed!) this field, like all other
‘numeric’ fields in the header, is
actually a number that’s been

➤ Facing page and above:
Listing 2.

const
PermOtherExec = $1; // other, execute/search
PermOtherWrite = $2; // other, write
PermOtherRead = $4; // other, read
PermGroupExec = $8; // group, execute/search
PermGroupWrite = $10; // group, write
PermGroupRead = $20; // group, read
PermOwnerExec = $40; // owner, execute/search
PermOwnerWrite = $80; // owner, write
PermOwnerRead = $100; // owner, read

➤ Listing 3

54 The Delphi Magazine Issue 59

encoded as an octal string! Retro
computing rules OK!

The uid field is an octal string
that is a number corresponding to
the user ID of the file owner.

The gid field is another encoded
number that corresponds to the
group ID of the file owner.

The size field, as you’d expect, is
the size of the file. It can encode a
total of twelve octal digits, giving
us a potential range of 812 which
corresponds to a maximum file
size of 64Gb. If the tar file entry isn’t
a physical file (eg a directory entry
or a representation of a UNIX-style
link) then the size field will be zero.
One important point that I’ve not
mentioned thus far is the block-
structured nature of tar files. You
can think of a tar file as being
divided up into 512 byte blocks,
something else which I suspect is a
historical hangover from the paper
tape days. These file headers are
always aligned on 512-byte bound-
aries and even if a file occupies a
single byte, it will still have 512
bytes allocated to it in the file. Now
you see why it’s such a good idea to
compress a tar file: it’s a very ineffi-
cient archive format for storing
large numbers of small files.

The mtime field is the modifica-
tion date of the file expressed in
Coordinated Universal Time: the
number of seconds that have
elapsed since 1st January 1970.
And thereby hangs a tale. As far as I
know (please correct me if I’m
wrong), Windows doesn’t actually
have a built-in function for convert-
ing Coordinated Universal Time
into the more familiar time/date
formats used by Delphi. After a cer-
tain amount of hunting around
(Cathy: this is why the article was
late; am I forgiven? [Dave: have you
tried sending her cream cakes? Ed])
I managed to find an MSDN article
which explains how to do this.
Unfortunately, it uses a couple of
Windows API calls. Arghhhh,
horror! This is why I cunningly
describe my TTarFile class as
being ‘mostly portable’. Hopefully,
Borland will be able to provide a
sufficiently rich set of date/time
conversion routines in CLX as to
eliminate this Win32 dependency.
Time will tell.

The chksum field is used to
provide a checksum. Somewhat
counter-intuitively, this is only
used to check the integrity of the
file header, not of the file itself.
Error checking: what error check-
ing? The checksum is calculated by
adding together all the bytes that
make up the file header.

The remaining fields are, for the
most part, not especially relevant
when accessing a tar file from a
Windows environment. The
linkflag field is perhaps the most
important and indicates whether
we’re dealing with a directory, a
regular file, or whatever. The
possible values of this field are
described in more detail in the
tar.txt file which you’ll find on the
companion disk. Incidentally, after
spending an hour trawling the net,
this was the only reasonably com-
plete definition of the tar file
format that I was able to find. The
linkname field and the other fields
are only relevant for certain types
of files that aren’t relevant under
Windows. An exception is the magic
field which, if it contains the spe-
cial string ustar, indicates that the
uname and gname fields are valid,
containing an alphanumeric repre-
sentation of the user and group
owner fields which should be used
in preference to the previously
discussed uid and gid fields.

A Simple TAR
Viewer/Extractor Utility
With this as background, Figure 2
shows a simple program which
provides the ability to scan a tar
file, display a directory listing and
extract a specified file from the
archive, the complete source for
this being shown in Listing 2. I
haven’t bothered to separate out

the TTarFile class into a reusable
component in its own unit, but this
can easily be done if desired. For
the purposes of simplicity, I’ve
also restricted this code to reading
and extracting: it can’t create new
tar files, nor alter existing ones. It
wouldn’t be too difficult to add
these capabilities but, to be
honest, I don’t think there’s much
mileage to be gained from prolong-
ing the life of antique, brain-dead
file formats. The emphasis here is
on accessing tar files from a Delphi
or Kylix Pascal application.

As you can see, the program
uses a TListView control (yes, this
control will undoubtedly be pres-
ent in Kylix, courtesy of the exist-
ing QListView control which forms
part of the extensive widget collec-
tion offered by the Qt class
library). The TTarFile class is
responsible for parsing a tar file
and converting it into a form which
is more easily digestible by Delphi
applications, namely a TStringList
contains a list of all the files, direc-
tories, links, etc, contained within
the tar file. This class is very
simple, with a constructor and
destructor being the only intro-
duced methods. You could easily
turn it into a drop-in, reusable
component, but this would obvi-
ously involve extra work. The asso-
ciated Objects property of the
string list contains an array of
TTarFileEntry objects, each of
which provides more detailed
information on that particular file
entry. You’ll notice that I haven’t
bothered copying all the informa-
tion from the tar header record,
it’s simply not needed here.

Next, the source code includes a
few utility routines. Firstly, there’s
OctalToInt which does exactly

➤ Figure 2: My little demo program can display the files in a tar
archive and allows you to remove files on an individual basis.

July 2000 The Delphi Magazine 55

what it says on the tin. This routine
is extensively used to convert octal
number representations into a
plain-vanilla integer. You’ll also see
that this routine makes use of the
Trim function. This is actually very
important when working with tar
file headers because many of those
octal strings are padded with
spaces. Read the tar.txt file for
more information on this.

Next comes the deeply impene-
trable UnixTimeToFileTime routine.
No, I don’t have a clue where that
number 11644473600 comes from!
Suffice to say that it just works.
Firstly, the code converts a UNIX
date/time field (expressed here as
a 64-bit integer) into a TFileTime
structure as used by the Windows
API. Next the FileTimeToLocal-
FileTime routine is used so as to
express the date/time with respect
to the current locale, and next it is
converted to a DOS format date/
time before finally massaging it
into the much more useful
TDateTime format which all VCL
programmers know and love. I’ve
flagged those two dastardly Win32

API routines for subsequent
removal. If anyone knows of a
simple, platform independent way
to do these date/time conversions,
then I’d like to hear from you.

The last of our utility functions
takes the file permissions field and
converts it into the human-
readable format familiar to UNIX
programmers. The permission bits
are expressed in the standard
order: owner, group, other. In
other words, three permission bits
for the owner, followed by three for
the group and then three for
anyone else. The code works by
right-shifting the permissions field
and calling PermFlags for owner,
group and other in turn.

Moving swiftly on, the TTarFile.
Creator constructor is responsible
for opening the tar archive and
scanning through it in search of file
headers. Firstly, it creates the
FileList object which is used to
store our list of files. Next, it
verifies that the archive exists and
opens a file stream object in the
normal way. At this point, a little
validation code (ie, is this really a

tar file?) wouldn’t go amiss, but
this is left as an exercise to the
reader! Probably the simplest
thing would be to check that the
Header.magic field is one of the
recognised values, as defined in
the tar.txt file.

The code then iterates through
the file, reading successive file
headers. An interesting ‘gotcha’ of
tar files is their ability to include an
arbitrary number of zero bytes fol-
lowing the last file’s data. Again,
this shouldn’t surprise anyone
who, like your scribe, is old
enough to remember the trailer
section associated with a paper
tape. In order to detect an end of
file condition, I check for a file
entry which has a null file name. If
you don’t implement this check,
then you’ll find that the file list will
fill up with a number of ‘empty’ file
entries.

Immediately prior to reading the
file header, 512 bytes are added to
the current stream position and
saved into NextBlock. This desig-
nates the position of the next file
header, assuming that we are

56 The Delphi Magazine Issue 59

dealing with a zero-length file such
as a link or directory entry. If it’s
not a zero-length file, then Next-
Block gives us the byte offset into
the archive of where the file data
can be found. For each file entry, a
new TTarFileEntry object is cre-
ated and the various fields initial-
ised. As I mentioned earlier, the
Header.magic field indicates
whether we’re dealing with
numeric or ASCII user/group file
owner information, and the uid and
gid fields are set up accordingly.

If we’re dealing with a real file (ie
one that occupied more than zero
bytes in the tar file!) we have to cal-
culate the position of the next file
header. This is done by adding 511
to the file size and then dividing by
512, thus giving the total number of
512-byte blocks occupied by the
file. This is then multiplied by 512
and added to the NextBlock value
so as to give the next file header
position. Finally, when everything
has been read, the file stream
object is destroyed and the routine
terminates.

Implementation of the class
destructor is trivial, it just walks
the file list, destroying all the
TTarFileEntry objects that were
previously created. The Button1-
Click routine corresponds to
pressing the Open button in the
screenshot. This code simply
prompts the user for a tar file to
open using a TOpenFileDialog in the
usual way, creates a correspond-
ing TTarFile object and then loads
the associated data into the
TListView control which is
operating in report mode.

Finally, the FilesDblClick rou-
tine is called whenever an entry in
the list view is double clicked. It
retrieves the corresponding file
size and file offset, together with
the name of the file. An error mes-
sage is displayed if the user clicked
a zero-length file corresponding to
a directory or link, though I sup-
pose in a full featured visual tar
program you might want to give
the user the option of ‘extracting a
directory’, thereby creating a
folder. One wrinkle here is the need
to remove those forward slash
characters from the pathname,
replacing them with backslashes.

If you don’t do this, the Extract-
FileName routine isn’t much use.
This is accomplished by the DeUnix
routine.

Finally, the code requests confir-
mation that you want to extract a
file and calls ExtractFile to do the
business, reopening the archive
and using the handy-dandy Copy-
From method to move the wanted
file data from the source to the des-
tination stream. Easy peasy.

Conclusions
I wouldn’t dare pretend that this is
a fully-featured tar extractor by
any means. You might want to add
the ability to extract to the relative
path specified by the file entries
within the tar file, add a facility to
perform automatic conversion of
LF sequences to CR/LF, and so
forth. The goal here is simply to
provide a basis for your own
tar-related utilities and, at the
same time, discuss Kylix portabil-
ity with some real code. As you can
see, I didn’t succeed in creating
something that was 100% portable,
thanks to those two date/time
related Windows API calls, but I
don’t doubt that there’ll be some
way around that problem once
Kylix arrives. Until then, have fun

➤ Figure 3: This is the DynaZIP-GT Shell program, part of the recently
introduced DynaZIP-GT programmers’ toolkit which you can find at
www.innermedia.com. This product offers full compatibility with
both tar and gzip files.

and happy (cross-platform)
programming.

Inner Media have recently
released DynaZIP-GT, a fully-
featured commercial toolkit which
can be used to work with both tar
and gzip files. It’s compatible with
Delphi, C++Builder, and in fact
most Windows programming envi-
ronments. You can download a full
version (no time-bombs, no crip-
pled features) for evaluation pur-
poses from www.innermedia. com,
and the distribution includes the
useful demo program shown in the
screenshot above.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows, DOS and Linux
work. He is the Technical Editor of
Developers Review which is also
published by iTec. You can
contact Dave at TechEditor@
itecuk.com

	Removing Windowisms
	Enter Delphi 6 And CLX
	The TAR File Format
	A Simple TAR Viewer/Extractor Utility
	Conclusions

